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Study on the interaction between a dislocation

and impurities in KCl:Sr2+ single crystals by the

Blaha effect

Part III Influence of heat treatment on various characteristics
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Faculty of Engineering, Kanazawa University, Kodatsuno 2-40-20,
Kanazawa 920-8667, Japan

Strain-rate cycling tests associated with ultrasonic oscillation were conducted at 80–239 K
for two kinds of KCl:Sr2+ (0.05 mol% in the melt) single crystals: quenched and annealed
specimens. Examining the relationship of temperature and dislocation velocity-effective
stress exponent, m∗, estimated from the data obtained in this series, we could find the
suitable force-distance relation between a dislocation and the impurity. The force-distance
relation for the quenched specimen approached to the Fleischer’s model taking account of
the Friedel relation rather than the Fleischer’s model. As for the annealed specimen, the SQ
was the most appropriate of the three models: the SQ, the PA, and the TR indicate a square,
a parabolic, and a triangular force-distance profile respectively. The three force-distance
relations are taken account of the Friedel relation. By annealing the quenched specimen, m∗

became low at a given temperature. This may have been caused by the following two
phenomena. First, the concentration of weak obstacles to dislocation motion decreased
after the heat treatment. Secondly, the resistance to movement of a dislocation in the
quenched specimen was weakened by annealing it, e.g., F0 was reduced to about one-third
and ϕ0 increased from 154 to 172 degrees. F0 and ϕ0 are the force acted on the dislocation
and the bending angle of dislocation by the weak obstacle such as the impurity. Therefore,
it may be deduced that the dislocation velocity in the quenched specimen is more sensitive
to the effective stress due to the impurities than that in the annealed specimen at the
temperature. C© 2004 Kluwer Academic Publishers

1. Introduction
When alkali halide crystals are doped with divalent
ions, the ions are expected to be paired with positive
ion vacancies. The pairs are termed I–V dipoles. If the
I–V dipoles in KCl:Sr2+ single crystals aggregate by
heat treatment, various deformation characteristics will
be changed. This is because the state of a small amount
of impurities in the crystals strongly influences the re-
sistance to movement of a dislocation [1]. In part II [2]
of this series, the influence of the heat treatment on the
force-distance relation between a dislocation and the
impurity was described from the dependence of strain-
rate sensitivity due to the impurities on temperature. In
part III, the study is carried out in more detail by exam-
ining the relation between temperature and dislocation
velocity-effective stress exponent, m∗, expressed by [3]

v = Aτm∗
(1)

wherev is the average velocity of dislocation, τ is the ef-
fective shear stress, and A and also m∗ are constants for
a given material and temperature. Although Equation 1
is regarded as an empirical relationship [4], m∗ is use-

ful for investigating the behavior of thermally activated
dislocation motion in various materials (e.g., NaCl con-
tained Ca2+, Mg2+, Sr2+, and Ba2+ [5], body-centered
cubic metals [6], Nb [7], LiF:Mg2+ [8], and binary iron-
base alloys contained Co, Cr, Al, Si, Ni and Mn, respec-
tively [9]). In addition, the influence of a state of the
impurities on the deformation characteristics (i.e., the
force acted on the dislocation and the bending angle of
dislocation by the impurity) is investigated on the basis
of the data obtained in this series.

2. Experimental procedure
Two kinds of KCl:Sr2+ (0.05 mol% in the melt) single
crystals, which were about 5 × 5 × 15 mm3, were de-
formed at 80–240 K by compression along the 〈100〉
axis and ultrasonic oscillatory stress was applied by a
resonator in the same direction as the compression dur-
ing a strain-rate cycling test. Specimens were prepared
by the following treatment. The specimens were cooled
to room temperature at a rate of 40 Kh−1 after keep-
ing at 973 K for 24 h in order to reduce dislocation
density. Further, the specimens were held at 673 K for
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30 min and were cooled by water quenching in order
to disperse the impurities immediately before the test.
These specimens are termed the quenched specimens
in this paper. The other kind of specimens were ob-
tained by keeping the quenched specimens at 370 K
for 500 h and gradually cooling in a furnace for the
purpose of aggregating the impurities [10]. These are
termed the annealed specimens in this paper. The strain-
rate cycling test associated with the oscillation has been
described in the previous papers [11–13].

3. Results and discussion
3.1. Force-distance relation between

a dislocation and the impurity
3.1.1. Quenched specimen
Deformation behavior has been investigated with the
mε=0 which is obtained by extrapolating a relative curve
of strain-rate sensitivity, �lnε̇/�lnτa, and shear strain
to zero strain [14–18]. �lnτa is the logarithmic change
in applied shear stress due to the strain-rate cycling test
without the oscillation during plastic deformation. The
value of mε=0 for alkali halide was considered to be
m∗ [19] (i.e., the values of m∗ are about 26.5 for the
quenched specimen at 175 K and 20.0 for the annealed
specimen at 125 K, as can be seen from Fig. 1a and
b). Using mε=0, reasonable value of effective stress and
hardening mechanism were found for zone-refined iron
[15] and potassium contained Na+ (25 p.p.m.) [16] dur-
ing the deformation. Open circles in Fig. 2 correspond
to the mε=0 for the quenched specimen.

(a)

(b)

Figure 1 Variation of m with shear strain for (a) the quenched specimen
at 175 K and (b) the annealed specimen at 125 K.

Figure 2 Relationship between the temperature and the dislocation
velocity-effective stress exponent for the quenched specimen at the
two models: (---) the Fleischer’s model and (—) the F-F. Open circles
represent the mε=0 for the quenched specimen.

The m∗ for the Fleischer’s model was given by [20]
as:

m∗ = F0b{(τ/τ0)1/2 − (τ/τ0)}/(kT ) (2)

where F0 is the force acted on the dislocation at 0 K, b is
the magnitude of the Burgers vector, τ0 is the effective
shear stress τ at 0 K, and kT has the usual meaning.
The Fleischer’s model has been widely used for the in-
teraction between a dislocation and an impurity in ionic
crystals doped with divalent cations [20–23]. The tem-
perature dependence of the effective stress was given
by [20]

(τ/τ0)1/2 = 1 − (T/Tc)1/2 (3)

where Tc is the critical temperature at which the effec-
tive stress is zero. Combining Equations 2 and 3, we can
evaluate the m∗ for the Fleischer’s model as follows

m∗ = F0b{(Tc/T )1/2 − 1}/(kTc) (4)

Friedel [24] derived an expression for the average spac-
ing of weak obstacles along the dislocation. The m∗ for
the Fleischer’s model taking account of the Friedel re-
lation, which is abbreviated as F-F in this paper, can be
obtained from the equation:

m∗ = 2F0b{(Tc/T )1/2 − 1}/(3 kTc) (5)

The development of Equation 5 is described in [25].
The results of Equations 4 and 5, in which F0 and Tc
are given in Table I, are represented as a dashed and a

TABLE I Values of F0 and Tc for various force-distance relations
between a dislocation and the impurity in the two specimens

Force-distance
Specimen relation F0 (×10−10 N) Tc (K)

Quenched specimen Fleischer 5.25 227 [12]
F-F 9.20 289 [32]

Annealed specimen SQ 2.85 220 [2]
PA 3.75 225 [2]
TR 4.65 228 [2]
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T ABL E I I Values of τp0 for various force-distance relations between
a dislocation and the impurity in the two specimens

Specimen Force-distance relation τp0 (MPa)

Quenched specimen Fleischer 14.52 [12]
F-F 25.47 [32]

Annealed specimen SQ 2.17 [2]
PA 3.28 [2]
TR 4.53 [2]

solid line respectively in Fig. 2. The value of F0 for the
Fleischer’s model is calculated from

F0 = τp0Lb (6)

and that for the F-F from

F0 = τp0 b
{
2L2

0 E
/

(τp0 b)
}1/3

(7)

where τp0 is the effective shear stress due to the impu-
rities without thermal activation [12, 26, 27], L is the
average spacing of impurities along the dislocation, L0
is the average spacing of impurities on the slip plane,
and E is the line tension of the dislocations. τp0 is given
in Table II. The value of Tc in Equation 4 is obtained
from Fig. 3a and that in Equation 5 from Fig. 3b. The re-
lation between (τp1/τp0) and temperature is considered
to reveal the force-distance relation between a dislo-
cation and an impurity, because τp1 corresponds to the
effective stress due to only one type of the impurities
which lie on the dislocation when the dislocation moves
forward with the help of oscillation [12, 26, 27].

The open circles are fitted to the solid line in compar-
ison with the dashed line as shown in Fig. 2. Therefore,
the force-distance relation for the quenched specimen
is suited to the F-F rather than the Fleischer’s model at
the temperature. Even though the open circles are given
within the narrow range of temperature, this method is
useful for the determination of suitable model.

Figure 3 Linear plots of the effective shear stress and the temperature
at (a) the Fleischer’s model and (b) the F-F for the quenched specimen:
KCl:Sr2+ ((◦) 0.035 mol%, (�) 0.050 mol%, (�) 0.065 mol% in the
melt).

3.1.2. Annealed specimen
It was clear that the force-distance relation for the an-
nealed specimen could not be approximated by the
Fleischer’s model and the F-F [2, 28], whereas the other
models were not distinct [2]. We investigate the applica-
bility of three models [29]: a square, a parabolic, and a
triangular force-distance relation, which are termed the
SQ, the PA, and the TR respectively in this paper. The
three force-distance relations are taken into account the
Friedel relation [24].

When the thermally activated overcoming of the
aggregates controls the dislocation velocity and
the dislocation moves forward the distance of L2

0/L , the
dislocation velocity is given by

v = ν
(
L2

0/L
)

exp{−�G/(kT )} (8)

where ν is the frequency of vibration of a dislocation
segment, �G is the change in Gibbs free energy of
activation for the dislocation motion. The Gibbs free
energy for the SQ is given by [2]

�G = �G0 − βτ 2/3 (9)

β = (
2µb4d3L2

0

)1/3
(10)

where µ is the shear modulus and d is an activation
distance. The PA gives [2]

�G = �G0{1 − (τ/τ0)2/3}3/2 (11)

and the TR gives [2]

�G = (β/8)
(
τ

2/3
0 − 2τ 2/3 + τ

−2/3
0 τ 4/3) (12)

Combining Equation 10 and the Friedel relation:

L = {
2L2

0 E
/

(τ0 b)
}1/3

(13)

the β is expressed by

β = τ
1/3
0 Lbd = �G0τ

−2/3
0 (14)

Substituting Equation 14 into Equations 9 and 12, we
find

�G = �G0{1 − (τ/τ0)2/3} (15)

�G = (�G0/8){1 − 2(τ/τ0)2/3 + (τ/τ0)4/3} (16)

From Equations 8 and 15, the dislocation velocity for
the SQ is expressed by

v = ν
(
L2

0

/
L
)

exp[−F0b{1 − (τ/τ0)2/3}/(kT )] (17)

From Equations 8 and 11, that for the PA yields

v = ν
(
L2

0

/
L
)

exp[−F0b{1 − (τ/τ0)2/3}3/2/(kT )]

(18)
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Similarly from Equations 8 and 16, that for the TR is

v = ν
(
L2

0

/
L
)

exp[−F0b{1 − 2(τ/τ0)2/3

+ (τ/τ0)4/3}/(8 kT )] (19)

It is well known that m∗ can be obtained from the fol-
lowing equation:

m∗ = ∂ ln v/∂ ln τ = τ (∂ ln v/∂τ ) (20)

(∂ ln v/∂τ ) in Equation 20 can be found from
Equation 17 as follows

∂ ln v/∂τ = {2F0b/(3 kT τ0)}(τ/τ0)−1/3 (21)

From Equation 18, we can find

∂ ln v/∂τ = {F0b/(kT τ0)}{1 − (τ/τ0)2/3}1/2(τ/τ0)−1/3

(22)

Similarly from Equation 19, we obtain

∂ ln v/∂τ = {F0b/(6 kT τ0)}{(τ/τ0)−1/3 − (τ/τ0)1/3}
(23)

Therefore, m∗ for the SQ is expressed by

m∗ = {2F0b/(3 kT )}(τ/τ0)2/3 (24)

The formula relating the effective stress and tempera-
ture for the SQ is

(τ/τ0)2/3 = 1 − (T/Tc) (25)

For PA the equivalent expression is

(τ/τ0)2/3 = 1 − (T/Tc)2/3 (26)

and for TR

(τ/τ0)2/3 = 1 − (T/Tc)1/2 (27)

Substituting Equation 25 into Equation 24, m∗ for the
SQ can be obtained as follows

m∗ = {2F0b/(3 k)}(T −1 − T −1
c

)
(28)

In the same way, m∗ for the PA from Equations 20, 22,
and 26 is expressed by

m∗ = {F0b/(kT )}{(T/Tc)1/3 − (T/Tc)} (29)

and using Equations 20, 23, and 27, m∗ for the TR is

m∗ = {F0b/(6 kT )}{(T/Tc)1/2 − (T/Tc)} (30)

Each curve in Fig. 4 for the annealed specimen cor-
responds to the relation between temperature and m∗
derived from Equation 28 for the SQ, Equation 29 for
the PA, and Equation 30 for the TR. F0 for the three

Figure 4 Relationship between the temperature and the dislocation
velocity-effective stress exponent for the annealed specimen at the three
models: (---) the PA, (—) the SQ, and (–·–) the TR. Open circles represent
the mε=0 for the annealed specimen.

models is calculated from Equation 7 in which the value
of τp0 is given in Table II. F0 and Tc are tabulated in
Table I. The relative curve of temperature and the m∗
for the SQ, that for the PA, and that for the TR are rep-
resented as a solid line, a dashed line, and a dash-dotted
line in Fig. 4. Open circles correspond to the m∗ for the
annealed specimen, which are obtained from mε=0. Un-
fortunately, it was difficult to evaluate m∗ above around
180 K, because the error in the measurement of mε=0
is large. As can be seen from Fig. 4, the open circles in-
crease with decreasing temperature and approach to the
solid line of SQ. Accordingly, it is considered that the
SQ can be selected as the most suitable force-distance
relation among the three.

3.2. F0, L/L0, and ϕ0
By using Equation 7, F0 was provided in the preceding
section. Then, the line tension of the dislocations is
calculated by µb2. The shear modulus is assumed to be
1.01 × 1010 Pa for [110] direction at 0 K [30]. Further,
the average spacing of isolated I–V dipoles on the slip
plane may be given by [20, 31]

L0 = b/(4c1/3)1/2 (31)

where the concentration of the impurities, c1, is
98.3 ppm from dielectric loss measurement. The aver-
age spacing of the aggregates on the slip plane is given
by

L0 = b
/

c1/2
2 (32)

where the concentration of the aggregates, c2, is
32.1 ppm from atomic absorption method, because the
aggregates in the annealed specimen are assumed to
form the trimers which are arranged hexagonally head
to tail in a (111) planes [10]. As a result, F0 calculated
from Equation 7 are 9.20×10−10 N and 2.85×10−10 N
for the quenched and annealed specimens respectively.
Thus F0 is reduced to about one-third by the heat treat-
ment. In addition, the average spacing, L , of impurities
along the dislocation at 0 K is 812 Å for the quenched
specimen and 2947 Å for the annealed specimen on
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T ABL E I I I Values of various characteristicsa for the two specimens

Specimen F0 (×10−10 N) L0 (Å) L/L0 ϕ0 (degrees)

Quenched specimen 9.20 389 2.1 154 [32]
Annealed specimen 2.85 786 3.8 172

aThe interaction between a dislocation and the impurity in the quenched
specimen is approximated by the F-F and that in the annealed specimen
by the SQ.

a calculation from the values of F0 and τp0. For the
quenched specimen L is about twice as long as L0,
but for the annealed specimen it is quadruple the value
of L0. Therefore, the bending angle, ϕ0, at which the
dislocation embraces the aggregates under the τp0 is ex-
pected to be larger than that for the quenched specimen.
We further examine ϕ0 for both the specimens. From
the equation [32]:

ϕ0/2 = cos−1{τp0L0b/(2E)}2/3 (33)

ϕ0 for the quenched specimen was 154 degrees [32] and
that for the annealed specimen 172 degrees. The var-
ious characteristics are summarized in Table III. Con-
sequently, the interaction between a dislocation and
the impurity for the quenched specimen is stronger in
comparison with that for the annealed specimen.

3.3. Influence of heat treatment on m∗
3.3.1. Based on mε=0
As described in the Section 3.2. of this paper, F0 de-
creases and ϕ0 increases on annealing of the quenched
specimen. Therefore, the resistance of obstacle to the
dislocation movement in the quenched specimen is
weakened by annealing it. In addition, L0 becomes
large after the heat treatment. That is, the concentration
of weak obstacles such as impurities decreases after the
treatment. If the results for F0, L/L0, ϕ0, and L0 are
real, it is expected that the value of m∗ for KCl:Sr2+
becomes smaller by the heat treatment as, according
to the description [33], m∗ becomes smaller when the
concentration or the resistance of obstacle to disloca-
tion motion decreases. Fig. 5 shows the m∗ for the two

Figure 5 Temperature dependence of the dislocation velocity-effective
stress exponent for the two specimens: (�) the quenched specimen and
(◦) the annealed specimen. Open symbols represent mε=0. (---) and (—)
are calculated by Equations 5 and 28, respectively.

kinds of specimens. Open triangles and circles corre-
spond to mε=0 for the quenched specimen and for the
annealed specimen, obtained in the Section 3.1. Dashed
and solid lines are derived from Equations 5 and 28. It
is clear that the m∗ for the annealed specimen is less
than that for the quenched specimen at a given tem-
perature, thus proving the above-mentioned prediction,
i.e., m∗ decreases by the heat treatment. The differ-
ence between the values of m∗ for the two specimens
is 13 to 17 within the temperature range. Fig. 5 also
suggests that the dislocation velocity in the quenched
specimen is more sensitive to the effective stress due to
the obstacles than that in the annealed specimen.

3.3.2. Based on the relation between SRS
and �τ

We deduce the values of m∗ from the relative curve
of strain-rate sensitivity (SRS) and stress decrement
(�τ ) due to the oscillation. The curve has two bend-
ing points and two plateau places and SRS decreases
with �τ between the two bending points [12]. Fig. 6
shows the typical variation of SRS with �τ . The curve
was considered to represent the influence of ultrasonic
oscillation on the dislocation motion on the slip plane
containing many weak obstacles such as impurities and
a few strong ones such as forest dislocations [12, 26,
27]. (� ln ε̇/�τ ′)p, which is given by the difference be-
tween SRS at first plateau place and at second one on
the relative curve of SRS and �τ , was assumed to be
the SRS due to impurities when the dislocation moves
forward with the help of oscillation [13, 26, 34]. �τ ′
is the stress change due to the strain-rate cycling when
the strain-rate cycling associated with the oscillation is
carried out keeping the stress amplitude constant. Then,
m∗ may be expressed by

m∗ = τp1(� ln ε̇/�τ ′)p (34)

where m∗ is examined on the assumption that
Equation 20 is also valid for the case of applying the
ultrasonic oscillatory stress during plastic deformation.
The results of Equation 34 are indicated by open sym-
bols in Fig. 7. Two curves in the figure are to guide
the reader’s eye. The values of τp1(� ln ε̇/�τ ′)p tend to

Figure 6 Relationship between the strain-rate sensitivity and the stress
decrement for the annealed specimen at 201 K and ε = 18%.
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Figure 7 Temperature dependence of the dislocation velocity-effective
stress exponent for the two specimens: (�) the quenched specimen and
(◦) the annealed specimen. Open symbols represent m∗ evaluated by
τp1(� ln ε̇/�τ ′)p.

increase with decreasing temperature as well as mε=0
shown in Fig. 5. Furthermore, τp1(� ln ε̇/�τ ′)p for the
annealed specimen is less than that for the quenched
specimen at a given temperature. This is also similar to
the above observations of mε=0 for the two specimens.

4. Conclusions
1. On the basis of m∗ obtained by mε=0, the follow-

ing can be found through Equations 4, 5, and 28–30 at
the temperature. The force-distance relation between a
dislocation and the impurity in the quenched specimen
is approximated by the F-F rather than the Fleischer’s
model as observed in Fig. 2. As for the annealed speci-
men, the SQ is the most appropriate among the SQ, PA,
and TR models as demonstrated in Fig. 4. In spite of the
narrow range of temperature, this method is useful for
the determination of suitable force-distance relation.

2. The resistance of weak obstacle to the dislocation
movement in the quenched specimen is weakened by
annealing it (e.g., F0 is reduced to about one-third and
ϕ0 increases from 154 to 172 degrees). Furthermore, the
concentration of weak obstacles decreases after the heat
treatment. These may lead to the results that m∗ calcu-
lated by mε=0 (Fig. 5) or by τp1(� ln ε̇/�τ ′)p (Fig. 7)
at a given temperature is lowered by the heat treatment.
From these figures, it may be deduced that the disloca-
tion velocity in the quenched specimen is more sensitive
to the effective stress than that in the annealed specimen
within the temperature range.

References
1. J . S . D R Y D E N, S . M O R I M O T O and J . S . C O O K , Philos.

Mag. 12 (1965) 379.
2. Y . K O H Z U K I and T . O H G A K U , J. Mater. Sci. 36 (2001) 923.
3. W. G. J O H N S T O N and J . J . G I L M A N , J. Appl. Phys. 30

(1959) 129.
4. J . W. C H R I S T I A N , Acta Metall. 12 (1964) 99.
5. M. T . S P R A C K L I N G , Philos. Mag. 27 (1973) 265.
6. M. A N G L A D A and F . G U I U , Scripta Metall. 13 (1979) 103.
7. F . G U I U and M. A N G L A D A , Philos. Mag. 46 (1982) 881.
8. J . A . G O R R I , A . P A Z and F . G U I U , Phys. Status Solidi (a)

82 (1984) 85.
9. K . O K A Z A K I , J. Mater. Sci. 31 (1996) 1087.

10. J . S . C O O K and J . S . D R Y D E N , Proc. Phys. Soc. 80 (1962)
479.

11. T . O H G A K U and N. T A K E U C H I , Phys. Status Solidi (a) 102
(1987) 293.

12. Y . K O H Z U K I , T . O H G A K U and N. T A K E U C H I , J. Mater.
Sci. 28 (1993) 3612.

13. Y . K O H Z U K I , ibid. 33 (1998) 5613.
14. A . G . E V A N S and P . L . P R A T T , Philos. Mag. 21 (1970) 951.
15. J . T . M I C H A L A K , Acta Metall. 13 (1965) 213.
16. I . M. B E R N S T E I N, J . C . M. L I and M. G E N S A M E R , ibid.

15 (1967) 801.
17. K . S . L E E and W. K. P A R K , J. Kor. Nucl. Soc. 10 (1978) 73.
18. N . T A K E U C H I , K . T E R A D A and S . Y O N E T A N I , Zairyo 27

(1978) 176 (in Japanese).
19. T . I M U R A , in “Strength of Crystals,” edited by R. R. Hasiguti and

S. Chikazumi (Asakurashoten, Tokyo, 1968) p. 28 (in Japanese).
20. R . L . F L E I S C H E R , J. Appl. Phys. 33 (1962) 3504.
21. R . L . F L E I S C H E R and W. R. H I B B A R D , “The Relation

between Structure and Mechanical Properties of Metals” (Her
Majesty’s Stationary Office, London, 1963) p. 261.

22. W. G. J O H N S T O N , J. Appl. Phys. 33 (1962) 2050.
23. M. S R I N I V A S A N and T . G. S T O E B E , J. Mater. Sci. 9 (1974)

121.
24. J . F R I E D E L , “Dislocations” (Pergamon Press, Oxford, 1964) p.

224.
25. Y . K O H Z U K I and T . O H G A K U , J. Mater. Sci. (in press).
26. T . O H G A K U and N. T A K E U C H I , Phys. Status Solidi (a) 111

(1989) 165.
27. Idem., ibid. 118 (1990) 153.
28. Y . K O H Z U K I , T . O H G A K U and N. T A K E U C H I , J. Mater.

Sci. 28 (1993) 6329.
29. A . J . E . F O R E M A N and M. J . M A K I N , Philos. Mag. 14

(1966) 911.
30. S . H A R T , Brit. J. Appl. Phys. (J. Phys. D) ser. 2 1 (1968) 1285.
31. M. T . S P R A C K L I N G , “The Plastic Deformation of Simple Ionic

Crystals,” edited by A. M. Alper, J. L. Margrave and A. S. Nowick
(Academic Press, London, 1976) p. 141.

32. Y . K O H Z U K I , J. Mater. Sci. 35 (2000) 3397.
33. K . S U M I N O , Jpn. Inst. Metals 10 (1971) 758 (in Japanese).
34. Y . K O H Z U K I , T . O H G A K U and N. T A K E U C H I , J. Mater.

Sci. 30 (1995) 101.

Received 28 March
and accepted 5 August 2003

112


